
Chris Perkins
04/26/2012

Implementation of QT Algorithm for STAR MTD : Run 2012

QT Code Version: 0x69
MCS File: qt32b_l0_v6_9.mcs

Description:
 This algorithm outputs the maximum TAC Pair Sum from eight MTD modules
and a bitmap of modules that had a TAC Pair Sum within a window of the maximum
TAC Pair Sum. Because of limited bit availability between daughter cards, the bitmap
may indicate that a module was within the window when in fact it was not within the
window. However, if the bitmap indicates that a module was not within the window, it is
guaranteed that the module was actually not within the window. As a result of this
approximate hitmap, an upstream DSM may over-count the actual multiplicity but will
never under-count the actual multiplicity. See the included pseudocode to reproduce the
hitmap.
 Each MTD module has an East and West end, which are connected to either the
first two or second two channels (2xADC and 2xTAC) on any QT8 daughter card. The
standard mask can be used for each channel to mask that channel from the trigger but
retain the data in the datastream. Note that separate masks must be used for ADC and
TAC channels.
 This algorithm assumes the standard configuration where channels 1-4 are signal
inputs and channels 5-8 are TAC inputs corresponding to channels 1-4. It uses the
standard “Good Hit” definition, which requires that a given ADC channel is greater than
some ADC Threshold and the corresponding TAC channel is greater than some
TAC_MIN and less than some TAC_MAX. For a module to be considered for the Max
TAC Pair Sum or indicate a hit in the hitmap, both East AND West must satisfy the
“Good Hit” requirement for that module. If either the East or West end of a module
doesn’t satisfy the “Good Hit” requirement, the TAC Pair Sum for that module will be ‘0’
and the hitmap bit will be ‘0’ even if a TAC Pair Sum of ‘0’ falls within the window. If
no module satisfies the “Good Hit” requirement, the Max TAC Pair Sum will be ‘0’.

Inputs:
 QT8A :
 Ch 1/2 : MTD Module 1 East/West ADC
 Ch 3/4 : MTD Module 2 East/West ADC
 Ch 5/6 : MTD Module 1 East/West TAC
 Ch 7/8 : MTD Module 2 East/West TAC
 QT8B :
 Ch 1/2 : MTD Module 3 East/West ADC
 Ch 3/4 : MTD Module 4 East/West ADC
 Ch 5/6 : MTD Module 3 East/West TAC
 Ch 7/8 : MTD Module 4 East/West TAC
 QT8C :
 Ch 1/2 : MTD Module 5 East/West ADC
 Ch 3/4 : MTD Module 6 East/West ADC
 Ch 5/6 : MTD Module 5 East/West TAC
 Ch 7/8 : MTD Module 6 East/West TAC
 QT8D :
 Ch 1/2 : MTD Module 7 East/West ADC
 Ch 3/4 : MTD Module 8 East/West ADC
 Ch 5/6 : MTD Module 7 East/West TAC
 Ch 7/8 : MTD Module 8 East/West TAC

Registers (1 Set Per Daughter Card):

Alg. Reg. 0 (Reg 13): “Good Hit” ADC Threshold
Alg. Reg. 1 (Reg 14): “Good Hit” TAC_MIN
Alg. Reg. 2 (Reg 15): “Good Hit” TAC_MAX
Alg. Reg. 3 (Reg 16): Max TAC Pair Sum Window

LUT:
 TAC timing adjustment/ADC Pedestal subtraction for each channel

Algorithm Latch: 2

L0 Output to DSM:

(0-12) : Maximum TAC Pair Sum (E + W)
(13-20) : Hitmap of modules with TAC Pair Sum within window (Mod1 – Mod8)
(21-31) : ‘0’

Pseudocode for Hitmap :

Incoming Hitmap Bits (Same algorithm on each Daughter Card) :

if (SUM1 > SUM2) then
 if (SUM1 > INCOMING_TAC_SUM_MAX) then
 if ((INCOMING_TAC_SUM_MAX + WINDOW) > SUM1) then
 Pass through incoming hitmap bits.

(Local SUM1 is the new max but the incoming sum is within the window)
 else
 Zero out incoming hitmap bits.
 (Local SUM1 is the new max and the incoming sum is outside the window)
 end if;
 else
 Pass through incoming hitmap bits.
 (The incoming sum is still the max)
 end if;
else
 if (SUM2 > INCOMING_TAC_SUM_MAX) then
 if ((INCOMING_TAC_SUM_MAX + WINDOW) > SUM2) then
 Pass through incoming hitmap bits.
 (Local SUM2 is the new max but the incoming sum is within the window)
 else
 Zero out incoming hitmap bits.
 (Local SUM2 is the new max and the incoming sum is outside the window)
 end if;
 else
 Pass through incoming hitmap bits.
 (The incoming sum is still the max)
 end if;
end if;

Local Hitmap Bits (Same algorithm on each Daughter Card) :

if (SUM1 > SUM2) then
 if (SUM1 > INCOMING_TAC_SUM_MAX) then
 TAC_MASK_OUT_L1 <= ‘1’; (SUM1 is the new max)
 if ((SUM2 + WINDOW) > SUM1) then
 MASK_OUT_L2 <= ‘1’; (SUM1 is the new max and SUM2 is within window)
 else
 MASK_OUT_L2 <= ‘0’; (SUM1 is the new max and SUM2 is outside window)
 end if;
 else
 if ((SUM1 + WINDOW) > INCOMING_TAC_SUM_MAX) then
 MASK_OUT_L1 <= ‘1’; (The incoming sum is still the max but SUM1 is within the window)
 else
 MASK_OUT_L1 <= ‘0’; (The incoming sum is still the max and SUM1 is outside the window)
 end if;
 if ((SUM2 + WINDOW) > INCOMING_TAC_SUM_MAX) then
 MASK_OUT_L2 <= ‘1’; (The incoming sum is still the max but SUM2 is within the window)
 else
 MASK_OUT_L2 <= ‘0’; (The incoming sum is still the max and SUM2 is outside the window)
 end if;
 end if;
else
 if (SUM2 > INCOMING_TAC_SUM_MAX) then
 TAC_MASK_OUT_L2 <= ‘1’; (SUM2 is the new max)
 if ((SUM1 + WINDOW) > SUM2) then
 MASK_OUT_L1 <= ‘1’; (SUM2 is the new max and SUM1 is within the window)
 else
 MASK_OUT_L1 <= ‘0’; (SUM2 is the new max and SUM1 is outside the window)
 end if;
 else
 if ((SUM1 + WINDOW) > INCOMING_TAC_SUM_MAX) then
 MASK_OUT_L1 <= ‘1’; (The incoming sum is still the max but SUM1 is within the window)
 else
 MASK_OUT_L1 <= ‘0’; (The incoming sum is still the max and SUM1 is outside the window)
 end if;
 if ((SUM2 + WINDOW) > INCOMING_TAC_SUM_MAX) then
 MASK_OUT_L2 <= ‘1’; (The incoming sum is still the max and SUM2 is within the window)
 else
 MASK_OUT_L2 <= ‘0’; (The incoming sum is still the max and SUM2 is outside the window)
 end if;
 end if;
end if;

Actions:

15

14

13

12

11

10

9 8 7 6 5 4 3 2 1 Tick

- - - - - - - - - L
atch out SU

M
_O

U
T

L

atch out H
IT

_M
A

SK
_O

U
T

M
ax(Sum

1, Sum
2, SU

M
_IN

)
 →

 SU
M

_O
U

T

H
itm

ap_A
lg(Sum

1, Sum
2,

 SU
M

_IN
, H

IT_M
A

SK
_IN

, R
3)

 →
 H

IT
_M

A
SK

_O
U

T

C
heck G

ood H
its →

 Sum
1, Sum

2

L
atch G

ood H
its

A
D

C
 > R

0 →
 A

D
C

_G
O

O
D

TA

C
 > R

1 →
 T

A
C

_M
IN

_G
O

O
D

TA

C
 < R

2 →

T
A

C
_M

A
X

_G
O

O
D

M
ask C

hannels / L
atch Inputs

Q
T8A

- - - - - - L
atch out SU

M
_O

U
T

L

atch out H
IT

_M
A

SK
_O

U
T

M
ax(Sum

1_D
el3, Sum

2_D
el3,

 SU
M

_IN
) →

 SU
M

_O
U

T

H
itm

ap_A
lg(Sum

1_D
el3, Sum

2_D
el3,

 SU
M

_IN
, H

IT_M
A

SK
_IN

, R
3)

 →
 H

IT
_M

A
SK

_O
U

T

Sum
s_D

el2 →
 Sum

s_D
el3

Latch in SU
M

_IN
, H

IT_M
A

SK
_IN

Sum
s_D

el1 →
 Sum

s_D
el2

Sum
s →

 Sum
s_D

el1

C
heck G

ood H
its →

 Sum
1, Sum

2

L
atch G

ood H
its

A
D

C
 > R

0 →
 A

D
C

_G
O

O
D

TA

C
 > R

1 →
 T

A
C

_M
IN

_G
O

O
D

TA

C
 < R

2 →
 T

A
C

_M
A

X
_G

O
O

D

M
ask C

hannels / L
atch Inputs

Q
T8B

- - - L
atch out SU

M
_O

U
T

L

atch out H
IT

_M
A

SK
_O

U
T

M
ax(Sum

1_D
el6, Sum

2_D
el6,

 SU
M

_IN
) →

 SU
M

_O
U

T

H
itm

ap_A
lg(Sum

1_D
el6, Sum

2_D
el6,

 SU
M

_IN
, H

IT_M
A

SK
_IN

, R
3)

 →
 H

IT
_M

A
SK

_O
U

T

Sum
s_D

el5 →
 Sum

s_D
el6

Latch in SU
M

_IN
, H

IT_M
A

SK
_IN

Sum
s_D

el4 →
 Sum

s_D
el5

Sum
s_D

el3 →
 Sum

s_D
el4

Sum
s_D

el2 →
 Sum

s_D
el3

Sum
s_D

el1 →
 Sum

s_D
el2

Sum
s →

 Sum
s_D

el1

C
heck G

ood H
its →

 Sum
1, Sum

2

L
atch G

ood H
its

A
D

C
 > R

0 →
 A

D
C

_G
O

O
D

TA

C
 > R

1 →
 T

A
C

_M
IN

_G
O

O
D

TA

C
 < R

2 →
 T

A
C

_M
A

X
_G

O
O

D

M
ask C

hannels / L
atch Inputs

Q
T8C

L
atch out SU

M
_O

U
T

L

atch out H
IT

_M
A

SK
_O

U
T

M
ax(Sum

1_D
el9, Sum

2_D
el9,

 SU
M

_IN
) →

 SU
M

_O
U

T

H
itm

ap_A
lg(Sum

1_D
el9, Sum

2_D
el9,

 SU
M

_IN
, H

IT_M
A

SK
_IN

, R
3)

 →
 H

IT
_M

A
SK

_O
U

T

Sum
s_D

el8 →
 Sum

s_D
el9

Latch in SU
M

_IN
, H

IT_M
A

SK
_IN

Sum
s_D

el7 →
 Sum

s_D
el8

Sum
s_D

el6 →
 Sum

s_D
el7

Sum
s_D

el5 →
 Sum

s_D
el6

Sum
s_D

el4 →
 Sum

s_D
el5

Sum
s_D

el3 →
 Sum

s_D
el4

Sum
s_D

el2 →
 Sum

s_D
el3

Sum
s_D

el1 →
 Sum

s_D
el2

Sum
s →

 Sum
s_D

el1

C
heck G

ood H
its →

 Sum
1, Sum

2

L
atch G

ood H
its

A
D

C
 > R

0 →
 A

D
C

_G
O

O
D

TA

C
 > R

1 →
 T

A
C

_M
IN

_G
O

O
D

TA

C
 < R

2 →
 T

A
C

_M
A

X
_G

O
O

D

M
ask C

hannels / L
atch Inputs

Q
T8D

